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Inverse Problem for a General Bounded Domain in
R3 with Piecewise Smooth Mixed Boundary
Conditions

E. M. E. Zayed1

Received April 4, 1999

We study the influence of a finite container on an ideal gas. The trace of the
heat kernel Q(t) 5 (`

n51 exp(2tmn), where {mn}`
n51 are the eigenvalues of the

negative Laplacian 2¹2 5 2 (3
b51 (­/­xb)2 in the (x1, x2, x3)-space, is studied

for a general bounded domain V with a smooth bounding surface S, where a
finite number of Dirichlet, Neumann, and Robin boundary conditions on the
piecewise smooth parts Si (i 5 1, . . . , n) of S are considered such that S 5
Un

i51Si. Some geometrical properties of V (the volume, the surface area, the mean
curvature, and the Gaussian curvature) are determined. Furthermore,
thermodynamic quantities, particularly the energy, for an ideal gas enclosed in
the general bounded domain V with Dirichlet, Neumann, and Robin conditions
are examined with the help of the asymptotic expansions of Q(t) for short time
t. We show that these thermodynamic quantities depend on some geometric
properties of V .

1. INTRODUCTION

Let V # R3 be a simply connected, bounded domain with a smooth
bounding surface S. Consider the Robin problem

2 ¹2u 5 mu in V (1.1)

1 ­

­n
1 g2u 5 0 on S (1.2)

where ­/­n denotes differentiation along the inward-pointing normal to S
with u P C 2(V) ∩ C(V). Denote its eigenvalues, counted according to the
multiplicity, by
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0 , m1 # m2 # m3 # . . . # mn # . . . → ` as n → ` (1.3)

The Robin problem (1.1)–(1.2) has been discussed by Zayed [11] when g
is a positive constant and by Zayed [17] when g is a smooth function which
is not strictly positive; geometric quantities associated with the bounded
domain V have been determined, using the asymptotic expansions of the
trace of the heat kernel

Q(t) 5 o
`

n51
exp(2tmn) as t → 0+ (1.4)

The Robin problem (1.1)–(1.2) has been investigated by many authors (see,
for example, refs. 2, 4–6, 8, 10) in the following special cases:

Case 1. g 5 0 (the Neumann problem):

Q(t) 5
V

(4pt)3/2 1
.S.

16pt
1

1
12p3/2t1/2 #

S

H dS

1
7

128p #
S

(H2 2 N ) ds 1 O(t1/2) as t → 0+ (1.5)

Case 2. g → ` (the Dirichlet problem):

Q(t) 5
V

(4pt)3/2 2
.S.

16pt
1

1
12p3/2t1/2 #

S

H dS

1
1

128p #
S

(H2 2 N ) dS 1 O(t1/2) as t → 0+ (1.6)

In these formulas, V, .S., H, and N are respectively the volume, the surface
area, the mean curvature, and the Gaussian curvature of V , where H 5
1–2 (1/R1 1 1/R2) and N 5 1/R1R2, while R1 and R2 are the principal radii
of curvature.

Case 3 (the mixed problem). Let .S1., H, and N respectively be the
surface area, mean curvature, and Gaussian curvature of a part S1 of the
surface S with the Neumann boundary conditions and let .S2., H, and N
respectively be the surface area, mean curvature, and Gaussian curvature of
the remaining part S2 5 S \S1 of S with the Dirichlet boundary conditions.
Then, considering refs. 12–16, we obtain

Q(t) 5
V

(4pt)3/2 1
.S1. 2 .S2.

16pt
1

1
12p3/2t1/2 H#

S1

H dS1 1 #
S2

H dS2J
1

1
128p H7#

S1

(H2 2 N ) dS1 1 #
S2

(H2 2 N ) dS2J
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1 1 t
p32

1/2 H 13
1440 #

S1

H 3 dS1 2
1

315 #
S2

H3 dS2J 1 O(t)

as t → 0+ (1.7)

The object of this paper is to discuss the following, more general inverse
problem: Suppose that the eigenvalues (1.3) are given for the Helmholtz
equation (1.1) together with the following Dirichlet, Neumann, and Robin
boundary conditions:

u 5 0 on Si (i 5 1, . . . , k)

­u
­ni

5 0 on Si (i 5 k 1 1, . . . , m) (1.8)

1 ­

­ni
1 gi2 u 5 0 on Si (i 5 m 1 1, . . . , n)

where the bounding surface S of V consists of a finite number of piecewise
smooth parts Si (i 5 1, . . . , n) such that S 5 øn

i51 Si and ­/­ni denotes
differentiation along the inward-pointing normal to the parts Si; the gi are
positive constants.

The basic problem is to determine some geometric quantities associated
with the problem (1.1) and (1.8) by using the asymptotic expansions of the
trace of the heat kernel (1.4).

Note that the special cases of the main problem (1.1) and (1.8) have
been discussed by many authors [e.g., 8, 10, 14–16]. Therefore, this problem
can be considered as a more general one which does not seem to have been
investigated elsewhere.

2. STATEMENT OF RESULTS

Suppose that the bounding surface S of the domain V is given locally
by infinitely differentiable functions xa 5 ya(s) (a 5 1, 2, 3) of the parameters
si (i 5 1, 2). If these parameters are chosen so that ai 5 const are lines of
curvature, the first and second fundamental forms of S can be written in
the form

P1(s, Ds) 5 o
2

i51
gii(s)(Dsi)2

P2(s, Ds) 5 o
2

i51
dii(s)(Dsi)2
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In terms of the coefficients g11, g22, d11, and d22 the principal radii of curvature
are R1 5 g11/d11, and R2 5 g22/d22. Let .Si. (i 5 1, . . . , n) be the surface
areas of the parts Si (i 5 1, . . . , n) of the surface S, respectively. Let hi .
0 (i 5 1, . . . , n) be sufficiently small. Let ni (i 5 1, . . . , n) be the minimum
distances from a point x 5 (x1, x2, x3) of the domain V to the parts Si (i 5
1, . . . , n), respectively. Let ni (s) (i 5 1, . . . , n) denote the inward-drawn
unit normal to the parts Si (i 5 1, . . . , n), respectively. Then, we note that
the coordinates in the neighborhood of the parts Si (i 5 1, . . . , n) are of the
same form as in Section 3 of Zayed [11] with the interchanges n } ni , h }

hi , I } Ii , C(I ) } D(Ii), and d* } di. Thus, we have the same formulas
(3.1)–(3.4) as in Section 3 of Zayed [11] with the interchanges n } ni , n(s)
→ ni (s), and dS } dSi.

Theorem 2.1. With the assumptions stated above, the asymptotic expan-
sion of Q(t) for small time t of the problem (1.1) and (1.8) can be written
in the form

Q(t) 5
a1

t3/2 1
a2

t
1

a3

t1/2 1 a4 1 a5t1/2 1 O(t) as t → 0+ (2.1)

where, if 0 , gi ,, 1 (i 5 m 1 1, . . . , c) and gi .. 1 (i 5 c 1 1, . . . ,
n), the coefficients an (n 5 1–5) can be written in the forms

a1 5
V

8p3/2

a2 5
1

16p HF o
m

i5k11
.Si. 1 o

c

i5m11
.Si.G

2 Fo
k

i51
.Si. 1 o

n

i5c111.Si. 2 2g21
i #

Si

H dSi2GJ
a3 5

1
12p3/2 Ho

k

i51
#

Si

H dSi

1 o
m

i5k11
#

Si

H dSi 1 o
c

i5m11
#

Si

(H 2 3gi) dSi 1 o
n

i5c11
#

Si

H dSiJ
a4 5

1
128p Ho

k

i51
#

Si

(H2 2 N ) dSi 1 7 o
m

i5k11
#

Si

(H 2 2 N ) dSi

1 7 o
c

i5m11
#

Si

[(H 2 3gi)2 2 1N 2
26
7

gi H 1
47
7

g2
i 2G dSi
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1 o
n

i5c11
#

Si

[H2 2 (N 2 16g21
i H )] dSiJ

a5 5
1

p3/2 H2
1

315 o
k

i51
#

Si

H 3 dSi 1
13

1440 o
m

i5k11
#

Si

H 3 dSi

1
13

1440 o
c

i5m11
#

Si

(H 2 3gi)3 dSi 2
1

315 o
n

i5c11
#

Si

H3 dSiJ
From this theorem, we deduce the following corollaries:

Corollary 2.1. If we consider the problem (1.1) and (1.8) with gi ..
1 (i 5 m 1 1, . . . , n), then the asymptotic expansion of Q(t) follows directly
from Theorem 2.1 by setting c 5 m with (m

i5m11 as zero.

Corollary 2.2. If we consider the problem (1.1) and (1.8) with 0 , gi

,, 1 (i 5 m 1 1, . . . , n), then the asymptotic expansion of Q(t) follows
directly from Theorem 2.1 by setting c 5 n with (n

i5n11 as zero.

Finally, let us add that the question raised by Kac [5], namely, “Can
one hear the shape of a drum?” was answered negatively by Gordon et al.
[1], who showed explicitly two domains that, although they have different
shapes, they have the same eigenvalues (i.e., isospectral domains). This
theoretical result was experimentally verified recently by employing thin
microwave cavities shaped in the form of two different isospectral domains
[9]. Milnor [7] had already showed in 1964 an example of two different
domains with the same eigenvalues, but they were two 16-dimensional tori.

3. DERIVATION OF THE RESULTS

In analogy with the two-dimensional problem [18] and considering refs.
8, 10, and 11, it is easy to show that the trace of the heat kernel Q(t) associated
with the problem (1.1) and (1.8) is given by

Q(t) 5 ##
V

#G(x, x; t) dx (3.1)

where G (x1, x2; t) is the Green’s function for the heat equation

¹ 2u 5
­u
­t

(3.2)
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subject to the Dirichlet, Neumann, and Robin boundary conditions (1.8) and
the initial condition

lim
t→0

G(x1, x2; t) 5 d (x1 2 x2) (3.3)

where d(x1 2 x2) is the Dirac delta function located at the source point x2.
Let us write

G(x1, x2; t) 5 G0(x1, x2; t) 1 x(x1, x2; t) (3.4)

where

G0(x1, x2; t) 5 (4pt)23/2 expH2
.x1 2 x2.2

4t J (3.5)

is the “fundamental solution” of the heat equation (3.2), while x(x1, x2; t) is
the “regular solution” chosen in such a way that G(x1, x2; t) satisfies the
Dirichlet, Neumann, and Robin boundary conditions (1.8). On setting x1 5
x2 5 x, we find that

Q(t) 5
V

(4pt)3/2 1 R(t) (3.6)

where

R(t) 5 # #
V

# x (x, x, t) dx (3.7)

The problem now is to determine the asymptotic expansion of R(t) as t →
0+. In what follows, we shall use Laplace transforms with respect to t, and
use s2 as the Laplace transform parameter; thus we define

G(x1, x2; s2) 5 #
`

0

e2s2t G(x1, x2; t) dt (3.8)

An application of the Laplace transform to the heat equation (3.2) shows
that G (x1, x2; s2) satisfies the membrane equation

(¹2 2 s2)G(x1, x2; s2) 5 2d(x1 2 x2) in V (3.9)

together with the Dirichlet, Neumann, and Robin boundary conditions (1.8).
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The asymptotic expansion of R(t) as t → 0+ may then be deduced directly
from the asymptotic expansion of R(s2) as s → `, where

R(s2) 5 # #
V

# x(x, x; s2) dx (3.10)

It is well known [e.g., 8, 10, 11] that the membrane equation (3.9) has
the fundamental solution

G0 (x1, x2; s2) 5 exp(2srx1x2)/4prx1x2 (3.11)

where rx1x2 5 .x1 2 x2. is the distance between the points x1 5 (x1
1, x2

1, x3
1)

and x2 5 (x1
2, x2

2, x3
2) of the domain V . The existence of such a solution

enables us to construct integral equations for G(x1, x2; s2) satisfying the
Dirichlet, Neumann, and Robin boundary conditions (1.8) with small/large
impedances gi. Therefore, if we consider the problem (1.1) and (1.8) with
0 , gi ,, 1 (i 5 m 1 1, . . . , c) and gi .. 1 (i 5 c 1 1, . . . , n), then
Green’s theorem gives the following integral equation:

G(x1, x2; s2) 5 exp(2srx1x2)/4prx1x2

1
1

2p o
k

i51
#

Si

F ­

­niy
G (x1, y; s2)G{exp(2sryx2)/ryx2} dy

2
1

2p o
m

i5k11
#

Si

[G (x1, y; s2)]
­

­niy
[exp(2sryx2)/ryx2] dy

2
1

2p o
c

i5m11
#

Si

[G (x1; y, s2)]

3 F1 ­

­niy
1 gi2 {exp (2sryx2)/ryx2}G dy

1
1

2p o
n

i5c11
#

Si

F ­

­niy
G (x1, y; s2)G

3 F11 1 g21
i

­

­niy2{exp(2sryx2)/ryx2}G dy (3.12)

On applying iteration methods [e.g., 11, 13, 14] to the integral equation
(3.12), we obtain the Green’s function G (x1, x2; s2) which has a regular part
in the following form:
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x(x1, x2; s2) 5 1o
20

i51
Ai2Y8p2 (3.13)

where

A1 5 o
k

i51
#

Si

­

­niy
[exp(2srx1y)/rx1y] {exp(2sryx2)/ryx2} dy

A2 5 2 o
m

i5k11
#

Si

[exp(2srx1y)/rx1y]
­

­niy
[exp(2sryx2)/ryx2] dy

A3 5 2 o
c

i5m11
#

Si

[exp(2srx1y)/rx1y] H1 ­

­niy
1 gi2[exp(2sryx2)/ryx2]J dy

A4 5 o
n

i5c11
#

Si

­

­niy
[exp(2srx1y)/rx1y]H11 1 g21

i
­

­niy2 [exp(2sryx2)/ryx2]J dy

A5 5 o
k

i51
#

Si
#

Si

­

­niy
[exp(2srx1y)/rx1y] M1i(y, y8)[exp(2sry8x2)/ry8x2] dy dy8

A6 5 o
m

i5k11
#

Si
#

Si

[exp(2srx1y)/rx1y] M2i (y, y8)
­

­niy8

[exp(2sry8x2)/ry8x2] dy dy8

A7 5 o
c

i5m11
#

Si
#

Si

[exp(2srx1y)/rx1y] Lgi (y, y8)

3 H1 ­

­niy8

1 gi2 [exp(2sry8x2)/ry8x2]J dy dy8

A8 5 o
n

i5c11
#

Si
#

Si

­

­niy
[exp(2srx1y)/rx1y] Lg21

i (y, y8)

3 H11 1 g21
i

­

­niy8
2 [exp(2sry8x2)/ry8x2]J dy dy8

A9 5 2o
k

i51
#

Si

H o
m

i5k11
#

Si

[exp(2srx1y)/ rx1y]M3i (y, y8) dyJ
3 [exp(2sry8x2)/ry8x2] dy8
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A10 5 2 o
m

i5k11
#

Si

Ho
k

i51
#

Si

­

­niy
[exp(2srx1y)/ rx1y]M4i (y, y8) dyJ

3
­

­niy8

[exp(2sry8x2)/ ry8x2] dy8

A11 5 2o
k

i51
#

Si

H o
c

i5m11
#

Si

[exp(2srx1y)/ rx1y]Mgi (y, y8) dyJ
3 [exp(2sry8x2)/ ry8x2] dy8

A12 5 2 o
c

i5m11
#

Si

Ho
k

i51
#

Si

­

­niy
[exp(2srx1y)/ rx1y]M4i (y, y8) dyJ

3H1 ­

­niy8

1 gi2 [exp(2sry8x2)/ ry8x2]J dy8

A13 5 o
k

i51
#

Si

H o
n

i5c11
#

Si

­

­niy
[exp(2srx1y)/rx1y] Lg21

i (y, y8) dyJ
3 [exp(2sry8x2)/ ry8x2] dy8

A14 5 o
n

i5c11
#

Gi

Ho
k

i51
#

Gi

­

­niy
[exp(2srx1y)/rx1y] M4i (y, y8) dyJ

3 H11 1 g21
i

­

­niy8
2 [exp(2sry8x2)/ry8x2]J dy8

A155 o
m

i5k11
#

Si

H o
c

i5m11
#

Si

[exp(2srx1y)/rx1y] Mgi (y, y8) dyJ
3

­

­niy8

[exp(2sry8x2)/ ry8x2] dy8

A16 5 o
c

i5m11
#

Si

H o
m

i5k11
#

Si

[exp(2srx1y)/rx1y] M3i(y, y8) dyJ
3 H1 ­

­niy8

1 gi2[exp(2sry8x2)/ry8x2]J dy8

A17 5 2 o
m

i5k11
#

Si

H o
n

i5c11
#

Si

­

­niy
[exp(2srx1y)/rx1y] Lg21

i (y, y8) dyJ
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3
­

­niy8

[exp(2sry8x2)/ry8x2] d y8

A18 5 2 o
n

i5c11
#

Si

H o
m

i5k11
#

Si

[exp(2srx1y)/rx1y]M3i (y, y8) dyJ
3 H11 1 g21

i
­

­niy8
2[exp(2sry8x2)/ry8x2]J dy8

A19 5 2 o
c

i5m11
#

Si

H o
n

i5c11
#

Si

­

­niy
[exp(2srx1y)/rx1y] L*g21

i (y, y8) dyJ
3 H1 ­

­niy8

1 gi2[exp(2sr y8x2)/ry8x2]J dy8

A20 5 2 o
n

i5c11
H o

c

i5m11
#

Si

[exp(2srx 1y)/rx1y] Mgi (y, y8) dyJ
3 H11 1 g21

i
­

­niy8
2[exp(2sry8x2)/ry8x2]J dy8

where we deduce also that

M1i(y, y8) 5 o
`

n50
K(n)

1i (y, y8)

K(0)
1i (y, y8) 5

­

­niy8

[exp(2sry8 y)/ry8y]/2p

M2i(y, y8) 5 o
`

n50
(21)n K(n)

2i (y, y8)

K(0)
2i (y, y8) 5

­

­niy
[exp(2sry8y)/ry8y]/2p

Lgi(y, y8) 5 o
`

n50
(21)nK(n)

gi (y, y8)

K(0)
gi (y, y8) 5 H1 ­

­niy
1 gi2[exp(2sry8y)/ry8y]JY2p

Lg21
i (y, y8) 5 o

`

n50
K(n)

g21i (y, y8)
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K(0)
g21i (y, y8) 5 H1 ­

­niy8

1 g21
i

­2

­niy ­niy8
2[exp(2sry8y)/ry8y]JY2p

M3i(y, y8) 5 o
`

n50
K(n)

3i (y, y8)

K(0)
3i (y, y8) 5

­2

­niy ­niy8

[exp(2sry8y)/ry8y]/2p

M4i(y, y8) 5 o
`

n50
(21)n K(n)

4i (y, y8)

K(0)
4i (y, y8) 5 [exp(2sry8y)/ry8y]/2p

Mgi(y, y8) 5 o
`

n50
(21)n *K(n)

gi (y, y8)

*K(0)
gi (y, y8) 5 H1 ­2

­niy ­niy8

1 gi
­

­niy2 [exp(2sry8y)/ry8y]JY2p

L*g21i (y, y8) 5 o
`

n50
*K(n)

g21
i (y, y8)

*K(0)
g21

i (y, y8) 5 H11 1 g21
i

­

­niy2[exp(2sry8y)/ry8y]JY2p

In these formulas we note, for example, that the K(n)
1i (y, y8) are the

iterates of K(0)
1i (y, y8). On the basis of (3.13), the function x(x1, x2; s2) will

be estimated for large values of s together with small/large impedances gi.
The case when x1 and x2 lie in the neighborhood of the piecewise smooth
parts Si (i 5 1, . . . , n) is particularly interesting. For this case, we use the
local expansions of the functions:

exp[(2srxy)/rxy],
­

­niy
[exp(2srxy)/rxy] (3.14)

when the distance between x and y is small, which are very similar to those
obtained in Sections 4 and 5 of ref. 11. Consequently, the local behavior of
the kernels

K(0)
1i (y, y8), K(0)

2i (y, y8), K(0)
3i (y, y8), K(0)

4i (y,y8), (i 5 1, . . . , n)
(3.15)

when the distance between y and y8 is small follows directly from the
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knowledge of the local expansions of (3.14). Similarly, when the distance
between y and y8 is small, and for small/large impedances gi , the local
behavior of the kernels

K(0)
gi (y, y8), K(0)

g21
i (y, y8), *K(0)

gi (y, y8), *K(0)
g21

i (y, y8) (i 5 1, . . . , n)
(3.16)

follows directly from the knowledge of the local expansions of (3.14).

Definition 3.1. If j1 and j2 are points in the half-part j3 . 0, then we define

r12 5 [(j1
1 2 j1

2)2 1 (j2
1 2 j2

2)2 1 (j3
1 1 j3

2)2]1/2

An el (j1, j2; s) function is defined for points j1 and j2 belongs to
sufficiently small domains D(Ii) (i 5 1, . . . , n) except when j1 5 j2 P Ii ,
and l is called the degree of this function. For every positive integer ∧, it
has the following local expansion [8, 11, 14]:

el(j1, j2 ;s) 5 (* f (j1
1), j2

1)(j3
1)p1(j3

2)p2 1 ­

­j1
1
2

l1

1 ­

­j2
1
2

l2

1 ­

­j3
1
2

l3

3
exp(2sr12)

r12
1 R∧(j1, j2; s) (3.17)

where (* denotes a sum of a finite number of terms in which f(j1
1, j2

1) is an
infinitely differentiable function. In this expansion p1, p2, l1, l2, l3 are integers,
where p1 $ 0, p2 $ 0, l1 $ 0, l2 $ 0, and l 5 min( p1 1 p2 2 q), where q
5 l1 1 l2 1 l3, and the minimum is taken over all terms which occur in the
summation (*. The remainder R∧(j1, j2; s) has continuous derivatives of
order d # ∧ satisfying

DdR∧(j1, j2; s) 5 O {s2∧ exp(2Asr12)} as s → ` (3.18)

where A is a positive constant.
Thus, using methods similar to those in Sections 6–10 of Zayed [11],

we can show that the functions (3.14) are el functions with degrees l 5 21,
22, respectively. Consequently, the functions (3.15) are el functions with
degrees l 5 0, 0, 21, 1, respectively, while for small/large gi , the functions
(3.16) are el functions with degrees l 5 0, 0, 21, 1, respectively.

Definition 3.2. If x1 and x2 are points in large domains V 1 Si (i 5 1,
. . . , n), then we define

r12 5 min
y

(rx1y 1 rx2y) if y P Si (i 5 1, . . . , k)

R12 5 min
y

(rx1y 1 rx2y) if y P Si (i 5 k 1 1, . . . , m)
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r*12 5 min
y

(rx1y 1 rx2y) if y P Si (i 5 m 1 1, . . . , c)

R*12 5 min
y

(rx1y 1 rx2y) if y P Si (i 5 c 1 1, . . . , n)

An El(x1, x2; s) function is defined and infinitely differentiable with
respect to x1 and x2 when these points belong to large domains V 1 Si (i 5
1, . . . , n) except when x1 5 x2 P Si. Thus, the El function has a similar
local expansion to the el function [8, 11, 14].

With the help of Section 8 in ref. 11, it is easily seen that the formula
(3.13) is an E22(x1, x2; s) function and consequently we have the estimate

G(x1, x2; s2) 5 o
k

i51
O{r 22

12 exp(2Aisr12)} 1 o
m

i5k11
O{R22

12 exp(2Ai sR12)}

1 o
c

i5m11
O {r*

22

12 exp(2Ai sr*12)} 1 o
n

i5c11
O{R*

22

12 exp(2AisR*12)}

(3.19)

which is valid for s → ` and for small/large impedances gi , where Ai are
positive constants. The estimate (3.19) shows that G(x1, x2; s2) is exponentially
small for s large. This proves that G (x1, x2; s2) converges for s → `. With
reference to Section 10 in Zayed [11], if the el expansions of the functions
(3.14)–(3.16) are introduced into (3.13) and if we use formulas similar to
(6.4) and (6.9) of Section 6 in ref. 11, we obtain the following behavior of
x(x1, x2; s2) when r12, R12, r*12, and R*12 are small, which is valid for s → `
and for small/large gi:

x(x1, x2; s2) 5 o
n

i51
xi (x1, x2; s2) (3.20)

where (a) if x1 and x2 belong to sufficiently small domains D(Ii) (i 5 1, . . . , k),

xi (x1, x2; s2) 5 2
exp(2sr12)

8pr12
1 O{r21

12 exp(2Ai s r12)} (3.21)

(b) if x1 and x2 belong to sufficiently small domains D(Ii) (i 5 k 1 1, . . . , m),

xi(x1, x2; s2) 5
exp(2sr12)

8pr12
1 O{r21

12 exp(2Aisr12} (3.22)

(c) if x1 and x2 belong to sufficiently small domains D(Ii) (i 5 m 1 1, . . . , c),
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xi (x1, x2; s2) 5
1

8p H1 2 gi 1 ­

­j3
1
2

21J exp(2sr12)

r12

1 O{r21
12 exp(2Ai sr12} (3.23)

(d) if x1 and x2 belong to sufficiently small domains D(Ii) (i 5 c 1 1, . . . , n),

xi (x1, x2; s2) 5 2
1

8p H1 2 g21
i 1 ­

­j3
1
2J exp(2sr12)

r12

1 O{r21
12 exp(2Aisr12} (3.24)

When r12 $ di . 0 (i 5 1, . . . , k), R12 $ di . 0 (i 5 k 1 1, . . . , m),
r*12 $ di . 0 (i 5 m 1 1, . . . , c), and R*12 $ di . 0 (i 5 c 1 1, . . . , n), the
function x(x1, x2; s2) is of the order O{exp(2Bs)} as s → `, B 5 const .
0. Thus, since

lim
r12→0

r12

r12
5 lim

R12→0

R12

r12
5 lim

r*12→0

r*12

r12
5 lim

R*12→0

R*12

r12
5 1

[8, 11], then we have the asymptotic formulas (3.21)–(3.24) with r12 in the
small domains D(Ii) (i 5 1, . . . , n) are replaced by r12, R12, r*12, R*12 in the
large domains V 1 Si (i 5 1, . . . , n), respectively.

Since for j3 $ hi . 0 (i 5 1, . . . , n) the functions xi (x, x; s2) are of
order O{exp(22Ai shi}, the integral over V of the function x(x, x; s2) can
be approximated in the following way [see (3.10)]:

R(s2) 5 o
n

i51
#

Si
#

hi

j350

xi (x, x; s2) {1 2 2j3H 1 (j3)2N} dj3 dSi

1 o
n

i51
O{exp(22Ai shi} as s → ` (3.25)

If the el expansions of xi (x, x; s2) are introduced into (3.25), then with
the help of the formula (11.2) of Section 11 in Zayed [11], we deduce after
inverting Laplace transforms and using (3.6), that the asymptotic expansion
(2.1) has been constructed, and the proof of Theorem 2.1 follows. n

4. AN APPLICATION OF THE INVERSE PROBLEM FOR AN
IDEAL GAS

With reference ref. 3, we are interested in examining how the thermody-
namic properties of an ideal gas are influenced by the geometry of its container.
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The thermodynamic properties of an ideal gas can be extracted from the
partition function

Z 5
zr

r!
(4.1)

where r is the number of particles and z is given by

z 5 o
v

exp(2 bEv) (4.2)

where b 5 (KBT )21, KB is Boltzmann’s constant, and T is the absolute
temperature. The eigenvalues (energy levels) of one particle Ev are obtained
from the stationary states C(x, t) 5 u(x) exp(2iEt/h) of the time-dependent
Schrodinger equation

2
h2

2M
¹2c 1 V x)c 5 ih

­c
­t

(4.3)

with V 5 0, where M is the mass of the particles and h is the Planck constant.
Thus u(x) obey the Helmholtz equation (1.1) with m 5 2ME/h2 and with
Dirichlet, Neumann, and Robin boundary conditions (1.8). Note that the trace
of the heat kernel Q(t) given by (1.4) of Section 1 formally is the same as
the one-particle partition function z(b) given by (4.2).

The purpose of this section is to use our main result (2.1) of Section 2
to derive a general expression for the corrections to the thermodynamic
quantities, particularly the energy for an ideal gas due to a large but finite
container volume.

Following Section 2, we can obtain information about the shape of the
domain by studying the asymptotic value of the sum (4.2) with b → 0 (i.e.,
T → `, the ideal gas case). Noting that the eigenvalue problem of the
Schrödinger equation is the same as the eigenvalue of the wave equation
with Dirichlet, Neumann, and Robin conditions, we can use directly our
result (2.1) replacing t by (h2/2M )b. Let us now consider the general partition
function (4.1). Using directly the result (2.1) with b → 0, we find that
equation (4.2) gives

z(b) 5 12M
h2 2

3/2
a1

b3/2 1 12M
h2 2 a2

b
1 12M

h2 2
1/2

a3

b1/2 1 a4

1 1 h2

2M2
1/2

a5b1/2 1 O(b) (4.4)

We set out to apply this formula to thermodynamic quantities such as the
internal energy U 5 2 ((­/­b) ln Z )v,r, the pressure P 5 b21((­/­V ) ln Z )T,r ,
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and the specific heat C 5 (­U/­T )v,r among others. In the case of the internal
energy, we obtain

U 5 2 r
­

­b
lnH12M

h2 2
3/2

a1

b3/2 1 12M
h2 2 a2

b
1 12M

h2 2
1/2

a3

b1/2 1 a4

1 1 h2

2M2
1/2

a5b1/2 1 O(b)J (4.5)

Now, differentiating, expanding in powers of b 5 (KBT )21, and using the
definition of the thermal wavelength L(T ) 5 (2ph2/MKBT )1/2, we obtain

U(T ) 5
3
2

rKBTH1 2
a2

6a1!p
L(T ) 1

1
12p F1a2

a1
2

2

2
2a3

a1
GL2(T )

2
1

24p3/2 F1a2

a1
2

3

2
3a2a3

a2
1

1
3a4

a1
GL3(T )

1
1

48p2 F1a2

a1
2

4

1
4a2a4

a2
1

2
4a2

2a3

a3
1

1 2 1a3

a1
2

2

2
4a5

a1
GL4(T ) 1 O(L5(T ))J

as T → ` (4.6)

Similar expressions hold for the pressure and the specific heat.
Thus, we have investigated the influence of the finite container V on

the thermodynamic quantities of an ideal gas. The calculations are based on
the asymptotic expansion formula (2.1) of the spectrum of the Laplacian.
The energy is obtained by the formula (4.6) as an expansion in powers
of the thermal wavelength, whose coefficients depend on some geometric
properties of the container V . Thus, in principal, an ideal gas could feel
some aspects of the shape of its container.

We close this section with the remark that Gutierrez and Yanez [3] have
recently constructed a formula similar to our formula (4.6) but for a simply
connected bounded domain with Dirichlet condition by using Waechter’s
formula (1.6) [10]. Of course, according to Gordon et al. [1], there are
domains where, although different in shape, the thermodynamic properties
of an ideal gas will be exactly the same, independent of the order of the
approximation in (4.6). In this sense, an ideal gas cannot feel the shape of
its container, although it can feel some geometric properties.
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